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Abstract—Big data analytics is the procedure of inspecting huge data sets to expose hidden 
patterns, unidentified associations, market trends, purchaser preferences and other useful 
business information. i.e. data analytics helps organizations harness their data and use it to 
identify new opportunities. Examining big data allows analysts, researchers, and business 
operators to make better and faster decisions using data that was before difficult to get to or 
unfeasible. Using progressive analytics methods such as text analytics, machine learning, 
predictive analytics, data mining, statistics, and usual language processing, businesses can 
study before unused data sources independent or together with their existing enterprise 
data to gain new insights resulting in significantly better and faster decisions. Thus to 
analyze such a growing data certain frameworks can be used. In this paper a survey on all 
the frameworks to analyze data and the comparative analysis on them is carried out.  
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I. INTRODUCTION 

BIG data is transforming business landscapes and the unprecedented excitement surrounding business 
analytics and big data has been generated primarily from the web and e-commerce communities [16]. Web-
based systems (WBS), ranging from product recommender systems, e- commerce platforms, social 
networking, gambling, gaming, to CRM (Customer Relationship Management), and SCM (Supply Chain 
Management) applications, have tradition- ally relied on data analytics to operate. For WBS, data ana-lytics 
is about generating predictions and tortious visions to improve real-time customer experience, increase 
market and customer intelligence, predict customer behav-iors, optimize operational efficiency, personalize 
service provision, prevent security threats and frauds, minimize brand risk, and innovate processes and 
services 

Categories of framework 
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Processing frameworks and processing engines are accountable for computing over information in a data 
system. Though there is no impressive definition setting apart "engines" from "frameworks", it is 
occasionally worthwhile to define the former as the actual component responsible for functioning on data and 
the latter as a set of components designed to do the same 

Batch Processing Systems 
Batch processing has a long history inside the big data world. Batch processing includes operating over a 
large ,  static  dataset   and   returning   the   result   at   a   later   time   when   the   computation   is complete 
The datasets in batch processing are typically... 

 bounded: batch datasets denote a finite collection of data 
 persistent: data is almost always supported by some type of permanent storage 
 large: batch operations are often the only selection for processing extremely large sets of data 

Batch processing is compatible for calculations where access to a complete set of archives is important. For 
example, when calculating totals and averages, datasets must be treated holistically instead of as a collection 
of individual records. These operations encompass that state be maintained for the time of the calculations. 
Tasks that need huge capacities of data are often best handled by batch processes. Whether the datasets are 
treated directly from permanent storage or loaded into memory, batch systems are built with huge quantities 
in mind and have the resources to handle them. Because batch processing excels at handling huge volumes of 
determined data, it normally is used with historical data. 
The trade-off for management of huge quantities of data is lengthier computation time. Because of this, batch 
processing is not suitable in situations where processing time is particularly important. 

Type of batch processing system:Apache Hadoop 
Apache Hadoop is a processing framework that completely gives batch processing. Hadoop was the original 
big data framework to advance important traction in the open-source community. Based on numerous 
documents and exhibitions by Google about how they were dealing with great volumes of data at the time, 
Hadoop re implemented the algorithms and component stack to make big scale batch processing more 
accessible. 
Modern forms of Hadoop are collected of numerous components that work composed to process batch data: 

 HDFS: HDFS is the distributed filesystem layer that coordinates storage and reproduction across the 
cluster nodes. HDFS confirms that data remains available in spite of inevitable host failures. It is 
used as the basis of data, to store intermediary processing outcomes, and to persevere the final 
calculated outcomes. 

 YARN: YARN, which stands for yet additional Resource Negotiator, is the cluster managing 
component of the Hadoop stack. It is accountable for interacting and handling the underlying assets 
and scheduling jobs to be run. YARN makes it possible to run much more varied workloads on a 
Hadoop bunch than was possible in previous repetitions by acting as an interface to the cluster 
resources. 

 MapReduce: MapReduce is Hadoop's inborn batch processing engine. 

 Batch Processing Model 
The processing functionality of Hadoop originates from the MapReduce engine. MapReduce's processing 
technique follows the map, shuffle and decrease algorithm using key-value pairs. The basic process 
comprises: 

 Interpret the dataset from the HDFS filesystem 
 Separating the dataset into chunks and distributed among the available nodes 
 Putting the calculation on to each node to the subset of data (the intermediary results are inscribed 

back to HDFS) 
 Redistributing the intermediary results to group by key 
 "Reducing" the value of each key by shortening and joining the results calculated by the separate 

nodes 
 Write the calculated final results back to HDFS 
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Stream Processing Systems 
Stream processing systems calculate above data as it enters the system. This needs a dissimilar processing 
model than the batch example. Instead of significant operations to apply to an entire dataset, stream 
processors define processes that will be applied to each separate data item as it passes through the system. 
The datasets in stream giving out are considered "unbounded". This has a few significant implications: 

 The entire dataset is only well-defined as the quantity of data that has arrived the system so far. 
 The working dataset is perhaps more applicable, and is limited to a single item at a time. 
 Processing is event-based and does not "stop" until explicitly stopped. Results are immediately 

available and will be continually updated as new data arrives. 
Stream processing systems can handle a closely limitless amount of data, but they only process one (true 
stream processing) or very insufficient (micro-batch processing) items at a time, with minimal state being 
maintained in between records. Though most systems provide procedures of maintaining some state, steam 
processing is extremely optimized for more useful processing with few side effects. 
Functional processes focus on separate steps that have limited state or side-effects. Performing the similar 
operation on the same part of data will give the same output independent of other factors. This kind of 
processing fits with streams as state between items is usually some combination of difficult, limited, and 
sometimes undesirable. So while some type of state management is typically possible, these frameworks are 
much simpler and more efficient in their absence. 
This type of processing gives itself to some types of workloads. Processing with near real-time requirements 
is well served by the flowing model. Analytics, server or application error logging, and other time-based 
metrics are a natural fit because reacting to changes in these areas can be critical to business purposes. 
Stream processing is a decent fit for data where you must answer to changes or spikes . 

Apache Storm 
Apache Storm is a stream processing framework that focuses on tremendously low latency and is possibly the 
best option for workloads that require near real-time processing. It can handle very large quantities of data 
with and bring results with fewer latency than other solutions. 
Stream Processing Model 
Storm stream processing works by scoring DAGs (Directed Acyclic Graphs) in a framework it calls 
topologies. These topologies defines the numerous alterations or steps that have been taken from each inward 
part of data as it enters the system. 
The topologies are made up of: 

 Streams: Conventional data streams. This is unbounded data that is constantly arriving at the 
system. 

 Spouts: Sources of data streams at the edge of the topology. These can be APIs, queues, etc. that 
gives data to be operated on. 

 Bolts: Bolts denote a processing step that consumes streams, put on an operation to them, and 
provides the outcome as a stream. Bolts are associated to each of the spouts, and then link to each 
other to assemble all of the necessary processing. At the end of the topology, final bolt output may 
be used as an input for a linked system. 

The purpose of Storm is to define small, distinct operations using the above components and then arrange 
them into a topology. By default, Storm provides at-least-one time processing guarantees, means that it can 
guarantee that every message is handled at least one time, but there may be duplicates in some failed 
scenarios. Storm does not provides that messages will be processed in order. 
In order to achieve exactly-once, stateful processing, an abstraction called Trident is also available. To be 
clear, Storm without Trident is often referred to as Core Storm. Trident significantly alters the processing 
dynamics of Storm, increasing latency, adding state to the processing, and implementing a micro-batching 
model as an alternative of an item-by-item pure streaming system. 
Storm users typically recommend using Core Storm whenever possible to avoid those penalties. With that in 
mind, Trident's promise to processes items exactly once is useful in cases where the system cannot 
intelligently handle duplicate messages. Trident is also the only option within Storm when you need to 
sustain state between items, like when counting how many users click a link within an hour. Trident gives 
Storm flexibility, although it does not play to the framework's natural strengths. 
Trident topologies are composed of: 
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Stream batches:  
These are micro-batches of stream data that are chunked in order to provide batch processing semantics. 

Operations:  
These are batch processs that can be performed on the data 

Stream Processing Model 
Samza relies on Kafka's semantics to define the way that streams are handled. Kafka uses the following 
concepts when handling the data: 

 Topics: Each stream of data entering a Kafka system is called a topic. A topic is basically a stream 
of interrelated information that consumers can subscribe to. 

 Partitions: In order to distribute a topic among nodes, Kafka divides the incoming messages into 
partitions. The partition divisions are based on a key such that each message with the same key is 
assured to be sent to the same partition. Partitions have guaranteed ordering. 

 Brokers: The individual nodes that make up a Kafka cluster are called brokers. 
 Producer: Any aspect writing to a Kafka topic is called a producer. The producer provides the key 

that is used to partition a topic. 
 Consumers: Consumers are any component that reads from a Kafka topic. Consumers are 

accountable for maintaining information about their own offset, so that they are aware of which 
records have been processed if a failure occurs. 

Since Kafka is represents an immutable log, Samza deals with immutable streams. This means that any 
transformations create new streams that are consumed by other components without affecting the initial 
stream. 
Samza is able to store state, using a fault-tolerant checkpointing system implemented as a local key-value 
store.  

Hybrid Processing Systems: Batch and Stream Processors 
Some processing frameworks can manage both batch and stream workloads. These frameworks simplify 
diverse processing requirements by allowing the same or related components and APIs to be used for both 
types of data. 
As you will see, the way  this is achieved varies significantly between Spark and Flink, the two frameworks 
we will discuss. This is a mainly a purpose of how the two processing paradigms are brought jointly and what 
assumptions are made about the relationship between fixed and unfixed datasets. 
While projects focused on one processing type may be a close fit for precise use-cases, the hybrid 
frameworks attempt to offer a general solution for data processing. They not only provide methods for 
processing over data, they have their own libraries, and tooling for doing things like, machine learning, and 
interactive querying. 

Apache Spark 
Apache Spark is a next generation batch processing framework with stream processing capabilities. Built 
using many of the similar values of Hadoop's MapReduce engine, Spark focuses primarily on speeding up 
batch processing assignments by presents full in-memory computation and processing optimization. 
Spark can be deployed as a separate cluster (if paired with a capable storage layer) or can hook into Hadoop 
as an alternative to the MapReduce engine. 

Batch Processing Model 
Unlike MapReduce, Spark processes all data in-memory, only interacting with the storage layer to initially 
load the data into memory and at the end to keep on the final results. All intermediary results are managed in 
memory. 
While in-memory processing contributes considerably to speed, Spark is also speeder on disk-related 
assignments because of holistic optimization that can be achieved by analyzing the whole set of assignments 
ahead of time. It reaches this by creating Directed Acyclic Graphs, or DAGs which signify all of the 
processes that must be performed, the data to be operated on, as well as the relationships between them, 
giving the processor a greater capability to logically coordinate work. 
To implement in-memory batch computation, Spark uses a model called Resilient Dispersed Datasets, or 
RDDs, to work with data. These are absolute structures that be within memory that represent collections of 
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data. Processes on RDDs produce new RDDs. Each RDD can trace its lineage back through its parent RDDs 
and ultimately to the data on disk. Essentially, RDDs are a way for Spark to keep fault tolerance without 
needing to write back to disk after each operation. 

Stream Processing Model 
Stream processing capabilities are given by Spark Streaming. Spark itself is designed with batch-oriented 
assignments in mind. To deal with the disparity between the engine design and the characteristics of 
streaming assignments, Spark implements a concept called micro-batches*. This strategy is designed to treat 
streams of data as a series of very small batches that can be managed using the natural semantics of the batch 
engine. 
Spark Streaming works by buffering the stream in sub-second increments. These are sent as small fixed 
datasets for batch processing. In practice, this jobs honestly well, but it does lead to a different performance 
profile than true stream processing frameworks. 

Apache Flink 
Apache Flink is a stream processing framework that can also manage batch assignments. It considers batches 
to simply be data streams with finite borders, and thus treats batch processing as a subset of stream 
processing. This stream-first approach to all processing has a numeral of interesting side effects. 
This stream-first approach has been called the Kappa architecture, in difference to the more widely known 
Lambda architecture (where batching is used as the primary processing method with streams used to 
supplement and provide early but unrefined results). Kappa architecture, where streams are used for all, 
shortens the model and has only recently become possible as stream processing engines have grown more 
sophisticated. 

Stream Processing Model 
Flink's stream processing model handles inward data on an item-by-item basis as a true stream. Flink gives 
its DataStream API to work with unbounded streams of data. The basic parts that Flink works with are: 

 Streams are immutable, limitless datasets that flow through the system 
 Operators are functions that function on data streams to produce extra streams 
 Sources are the entrance point for streams ingoing the system 
 Sinks are the place where streams movement out of the Flink system. They might signify a database 

or a connector to another system 
 Stream processing tasks take photos at set points during their computation to use for recovery in 

case of difficulties. For storing state, Flink can work with a number of state back ends dependent 
with varying levels of complexity and persistence. 

 Moreover, Flink's stream processing is capable to know the concept of "event time", meaning the 
time that the event really happened, and can handle sessions as well. This means that it can 
guarantee ordering and grouping in some interesting ways. 

Batch Processing Model 
Flink's batch processing model in many ways is just an postponement of the stream processing model. In its 
place of reading from a continuous stream, it reads a bounded dataset off of persistent storage as a stream. 
Flink uses the exact same runtime for both of these processing models 
Flink offers more or less optimizations for batch assignments. For instance, since batch operations are 
supported by persistent storage, Flink eliminates snapshotting from batch loads. Data is still recoverable, but 
normal processing finishes faster. 
Alternative optimization involves breaking up batch tasks so that stages and components are only involved 
when required. This helps Flink play well with other users of the cluster. Preemptive analysis of the 
assignments gives Flink the capability to also enhance by seeing the whole set of operations, the size of the 
data set, and the requirements of steps coming down the line. 
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II. TYPES OF FRAME WORKS 

 
Hadoop Framework 

Working with the Hadoop framework requires new big data solutions. 
Apache Hadoop is a critical technology for any enterprise require to take benefit of large data. The Hadoop 
framework brings the processing power big data needs by issuing the processing of massive data sets across 
multiple computer clusters – scaling from one server to thousands as needed. It arrange for high availability 
by managing failure at the application layer, and continuing processes even when a single server or cluster 
fails. And the Hadoop framework provides the efficiency needed to process big data by not asking 
applications to move large capacities of data across a network. 

HDFS and MapReduce 
There are two main components at the core of Apache Hadoop 1.x: the Hadoop Distributed File System 
(HDFS) and the MapReduce similar processing framework. These are both open source projects, encouraged 
by technologies created inside Google. 

Apache Storm 
Storm makes it easy to consistently process limitless streams of data, doing for real-time processing what 
Hadoop did for batch processing. Storm is simple, can be used with any programming language. 
Storm has many use cases: real-time analytics, online machine learning, non-stop computation, distributed 
RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second 
per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and 
operate. 

Apache Spark 
Apache Spark is a fast, in-memory data processing engine with graceful and communicative development 
APIs to permit data workers to efficiently execute streaming, machine learning or SQL assignments that 
require fast iterative access to datasets. With Spark running on Apache Hadoop YARN, designers 
everywhere can now create applications to exploit Spark’s power, derive insights, and enrich their data 
science assignments within a single, communal dataset in Hadoop. 
Apache Flink 
Apache Flink is a distributed data processing stage for use in big data applications, mainly involving analysis 
of data stored in Hadoop clusters. Backup a mixture of in-memory and disk-based processing, Flink manages 
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both batch and stream processing jobs, with data streaming the default implementation and batch jobs 
running as special-case forms of streaming applications. 
Flink was designed as an other to MapReduce, the batch-only processing engine that was paired with the 
Hadoop Distributed File System (HDFS) in Hadoop's initial incarnation. 

Comparative analysis of the frameworks 

Frame works Features 

Apache Flink 
Flink is a framework for unified stream and batch 
processing Flink has a record-based or any custom user-
defined Window criteria. 

Apache Spark 
Spark is based on micro-batch modal. Spark has a time-
based Window  criteria 
 

Apache Storm Supports true streaming processing model through core 
strom layer Storm provides configuring initial parallelism 
at various levels per topology 

Hadoop Hadoop is highly scalable in the way new hardware can 
be easily added to the nodes. Data is highly available and 
accessible despite hardware failure due to multiple copies 
of data. 

Samza 
Samza provides a very simple callback-based “process 
message” API Samza uses Kafka to guarantee that 
messages are processed in the order they were written to a 
partition, and that no messages are ever lost. 

III. CONCLUSION 

Hadoop and Spark frameworks are the utmost aware and utmost implemented of the projects in the space. 
They are also mainly batch processing frameworks. The final 3 frameworks are all real-time or real-time-first 
processing frameworks; as such, this post does not significance to be an apples-to-apples evaluation of 
frameworks. Instead, these numerous frameworks have been presented to get to know them a bit better, and 
understand where they may fit in. 
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